Abstract

Our previous study has demonstrated that morphine post-conditioning (MpostC) protects cardiomyocytes from ischemia/reperfusion (I/R) injury partly through activating protein kinase-epsilon (PKCε) signaling pathway and subsequently inhibiting mitochondrial permeability transition pore (mPTP) opening. In this study, we aim to investigate the relationship between long non-coding RNA TINCR and PKCε in cardiomyocytes under MpostC-treated I/R injury. The myocardial I/R rat model was established by the ligation of lower anterior descending coronary artery for 45 min followed by the reperfusion for 1 h, and MpostC was performed before the reperfusion. H/R and MpostC were performed in the rat cardiomyocyte cell line (H9C2), and the Cytochrome-c release in cytosol and mPTP opening were determined. Cell viability was detected by using Cell Counting Kit-8, and cell apoptosis was determined by using flow cytometry or TUNEL assay. The results indicated that MpostC restored the expression of TINCR in I/R rat myocardial tissues. In cardiomyocytes, the therapeutic effect of MpostC, including reduced mPTP opening, reduced Cytochrome-c expression, increased cell viability and reduced cell apoptosis, was dramatically negated by interfering TINCR. The expression of fibroblast growth factor 1 (FGF1), a protein that activates PKCε signaling pathway, was positively correlated with TINCR. The RNA immunoprecipitation and RNA pull-down assay further confirmed the binding between FGF1 and TINCR. Furthermore, TINCR was demonstrated to inhibit the degradation and ubiquitination of FGF1 in cardiomyocytes using the cycloheximide experiment and the ubiquitination assay. The TINCR/FGF1/PKCε axis was revealed to mediate the protective effect of MpostC against hypoxia/reoxygenation injury both in vitro and in vivo. In conclusion, our findings demonstrated that MpostC-induced up-regulation of TINCR protects cardiomyocytes from I/R injury via inhibiting degradation and ubiquitination of FGF1, and subsequently activating PKCε signaling pathway, which provides a novel insight in the mechanism of TINCR and PKCε during MpostC treatment of I/R injury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.