Abstract

Mitochondrial permeability transition pore (mPTP) opening is critical for mediating cell death during hepatic ischaemia-reperfusion injury (IRI). Blocking mPTP opening by inhibiting cyclophilin D (CypD) is a promising pharmacological approach for the treatment of IRI. Here, we show that diastereoisomers of a new class of small-molecule cyclophilin inhibitors (SMCypIs) have properties that make them attractive candidates for the development of therapeutic agents against liver IRI. Derivatives of the parent SMCypI were synthesised and evaluated for their ability to inhibit CypD peptidyl-prolyl cis-trans isomerase (PPIase) activity and for their mitoprotective properties, evaluated by measuring mitochondrial swelling and calcium retention capacity in liver mitochondria. The ability of the selected compounds to inhibit mPTP opening was evaluated in cells subjected to hypoxia/reoxygenation using a calcein/cobalt assay. Their ability to inhibit cell death was evaluated in cells subjected to hypoxia/reoxygenation by measuring lactate dehydrogenase (LDH) release, propidium iodide staining, and cell viability. The compound performing best invitro was selected for invivo efficacy evaluation in a mouse model of hepatic IRI. The two compounds that showed the strongest inhibition of CypD PPIase activity and mPTP opening, C105 and C110, were selected. Their SR diastereoisomers carried the activity of the racemic mixture and exhibited mitoprotective properties superior to those of the known macrocyclic cyclophilin inhibitors cyclosporin A and alisporivir. C105SR was more potent than C110SR in inhibiting mPTP opening and prevented cell death in a model of hypoxia/reoxygenation. Finally, C105SR substantially protected against hepatic IRI invivo by reducing hepatocyte necrosis and apoptosis. We identified a novel cyclophilin inhibitor with strong mitoprotective properties both invitro and invivo that represents a promising candidate for cellular protection in hepatic IRI. Hepatic ischaemia-reperfusion injury (IRI) is one of the main causes of morbidity and mortality during or after liver surgery. However, no effective therapies are available to prevent or treat this devastating syndrome. An attractive strategy to prevent hepatic IRI aims at reducing cell death by targeting mitochondrial permeability transition pore opening, a phenomenon regulated by cyclophilin D. Here, we identified a new small-molecule cyclophilin inhibitor, and demonstrated the enhanced mitoprotective and hepatoprotective properties of one of its diastereoisomers both invitro and invivo, making it an attractive lead compound for subsequent clinical development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.