Abstract
Solar energy plays an essential role in the current energy context to achieve sustainable development while supplying energy needs, creating jobs, and protecting the environment. Many solar radiation models have provided valid estimates at many different locations, using appropriate input variables for specific climatic conditions, but predictions are less accurate on a regional scale. Since radiometric weather stations are relatively dispersed, even in the most developed countries, it is interesting to develop indirect models based on measurements that are common in secondary network stations. This paper develops a monthly global solar radiation model based on a simple neural network structure, using temperature, geographical, and topographical data from 105 meteorological stations, representative of the whole of peninsular Spain. A hierarchical clustering procedure was employed to select the data used to train and validate the model. To avoid functional dependencies between parameters and variables, which hinder the generality of the model, all input and output variables are dimensionless. The estimates fit the 1260 monthly data with RRMSE values of about 6%, which improves results obtained previously, using regression models, and proves that simplicity is compatible with the generality and accuracy of a model, even in large regions with very varied characteristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.