Abstract
Two-phase coexistence in systems with free surfaces is enforced by boundary fields requiring the presence of an interface. Varying the temperature or the surface field, one can observe new types of phase transitions where the interface essentially disappears (it becomes bound to a wall or a wedge or a corner of the system). These transitions are simulated with Monte Carlo for Ising ferromagnets and polymer blends, applying finite size scaling analysis. Anisotropic critical fluctuations may occur, and in the limit where the system becomes macroscopically large in all three directions the order parameter vanishes discontinuously (either because its exponent β = 0 , or its critical amplitude diverges). Since interfacial fluctuations are slow and large systems are needed (e.g., lattices up to 80×80×442 sites in the double wedge case), significant computer resources are necessary for a meaningful accuracy.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have