Abstract

Using Monte Carlo simulations and finite-size scaling methods we study "wetting" in Ising systems in a LxLxL(y) pore with quadratic cross section. Antisymmetric surface fields H(s) act on the free LxL(y) surfaces of the opposing wedges, and periodic boundary conditions are applied along the y direction. In the limit L--> infinity, L(y)/L(3)=const, the system exhibits a new type of phase transition, which is the analog of the "filling transition" that occurs in a single wedge. It is characterized by critical exponents alpha=3/4, beta=0, and gamma=5/4 for the specific heat, order parameter, and susceptibility, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call