Abstract
Estimating the damage induced by an explosion around a blast hole has always been a challenging issue in geotechnical engineering. It is difficult to determine an exact dimension for damage zone since many parameters are involved in the formation of failures, and there are some uncertainties lying in these parameters. Thus, the present study adopted a probabilistic approach towards this problem. First, a reliability model of the problem was established and the failure probability of induced damage was calculated. Then, the corresponding exceedance risk curve was developed indicating the relation between the failure probability and the cracked zone radius. The obtained risk curve indicated that the failure probability drops dramatically by increasing the cracked zone radius so that the probability of exceedance for any crack length greater than 4.5 m is less than 5%. Moreover, the effect of each parameter involved in the probability of failure, including blast hole radius, explosive density, detonation velocity, and tensile strength of the rock, was evaluated by using a sensitivity analysis. Finally, the impact of the decoupling ratio on the reduction of failures was investigated and the location of its maximum influence was demonstrated around the blast point.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have