Abstract

We study QED3 with magnetic-like defects using the Julia–Toulouse condensation mechanism (JTM) introduced in [F. Quevedo, C.A. Trugenberger, Nucl. Phys. B 501 (1997) 143, arXiv:hep-th/9604196]. By a careful treatment of the symmetries we suggest a geometrical interpretation for distinct debatable issues in the MCS-monopole system: (i) the induction of the non-conserved electric current together with the Chern–Simons term (CS), (ii) the deconfinement transition and, (iii) the computation of the fermionic determinant in the presence of Dirac string singularities. The JTM leads to proper interpretation of the non-conserved current as originating from Dirac brane symmetry breaking. The mechanism behind this symmetry breaking is clarified. The physical origin of the deconfinement transition becomes evident in the low energy effective theory induced by the JTM. The proper procedure to compute the fermionic determinant in the presence of Dirac branes will be presented. A byproduct of this approach is the possible appearance of statistical transmutation and the clarification for the different quantization rules for the topological mass.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.