Abstract
Induction of endoplasmic reticulum (ER)-to-Golgi blockade or ER stress induces Golgi reassembly stacking protein (GRASP)-mediated, Golgi-independent unconventional cell-surface trafficking of the folding-deficient ΔF508-cystic fibrosis transmembrane conductance regulator (CFTR). However, molecular mechanisms underlying this process remain elusive. Here, we show that phosphorylation-dependent dissociation of GRASP homotypic complexes and subsequent relocalization of GRASP to the ER play a critical role in the unconventional secretion of CFTR. Immunolocalization analyses of mammalian cells revealed that the Golgi protein GRASP55 was redistributed to the ER by stimuli that induce unconventional secretion of ΔF508-CFTR, such as induction of ER-to-Golgi blockade by the Arf1 mutant. Notably, the same stimuli also induced phosphorylation of regions near the C-terminus of GRASP55 and dissociation of GRASP homomultimer complexes. Furthermore, phosphorylation-mimicking mutations of GRASP55 induced the monomerization and ER relocalization of GRASP55, and these changes were nullified by phosphorylation-inhibiting mutations. These results provide mechanistic insights into how GRASP accesses the ER-retained ΔF508-CFTR and mediates the ER stress-induced unconventional secretion pathway.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.