Abstract
Two new dyads have been synthesized in which terminal Ru(II) and Os(II) polypyridine complexes are separated by sterically constrained spiro bridges. The photophysical properties of the corresponding mononuclear complexes indicate the importance of the decay of the lowest-energy triplet states localized on the metallo fragments through the higher-energy metal-centered excited states. This effect is minimized at 77 K, where triplet lifetimes are relatively long, and for the Os(II)-based systems relative to their Ru(II)-based counterparts. Intramolecular triplet energy transfer takes place from the Ru(II)-based fragment to the appended Os(II)-based unit, the rate constant being dependent on the molecular structure and on temperature. In all cases, the experimental rate constant matches surprisingly well with the rate constant calculated for Förster-type dipole-dipole energy transfer. As such, the disparate rates shown by the two compounds can be attributed to stereochemical factors. It is further concluded that the spiro bridging unit does not favor through-bond electron exchange interactions, a situation confirmed by cyclic voltammetry.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have