Abstract

Os(II) complexes showing singlet-to-triplet absorption are of growing interest as a new class of triplet sensitizers that circumvent energy loss during intersystem crossing, and they enable effective utilization of input photon energy in various applications, such as photoredox catalysis, photodynamic therapy, and photon upconversion. However, triplet excited-state lifetimes of Os(II) complexes are often too short (τ < 1 μs) to transfer their energy to neighboring molecules. While the covalent conjugation of chromophores has been known to extend the net excited-state lifetimes through an intramolecular triplet energy transfer (IMET), heavy-atom effects of the central metals on the attached chromophore units have rarely been discussed. Here, we investigate the relationship between the spin-density contribution of the heavy metals and the net triplet excited-state lifetimes for a series of Os(II) and Ru(II) bis(terpyridine) complexes modified with perylene units. Phosphorescence lifetimes of these compounds strongly depend on the lifetimes of the perylenyl group-localized excited states that are shortened by the heavy-atom effect. The degree of heavy-atom effect can be largely circumvented by introducing meta-phenylene bridges, where the perylene unit retains its intrinsic long excited-state lifetime. The thermal activation to the short-lived excited states is suppressed, thanks to sufficient but still small energy losses during the IMET process. Involvement of the metal center was also confirmed by the prolonged lifetime by replacing Os(II) with Ru(II) that possesses a smaller spin-orbit coupling constant. These results indicate the importance of ligand structures that give a minimum heavy-atom effect as well as the sufficient energy gap among the excited states and fast IMET for elongating the triplet excited-state lifetime without sacrificing the excitation energy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.