Abstract
For paper coatings with organic nanoparticles of poly(styrene‐co‐maleimide), dispersive Raman spectroscopy and confocal Raman microscopy are applied for qualitative and quantitative analyses of the lateral distribution of chemical moieties as a function of different coating grades (degree of imidization) and thermal curing temperatures (120–250 °C). Raman mapping with band intensity ratios, single band intensities, and average spectral intensities illustrates that surface locations with imide moieties are sensitive to the thermal curing temperature due to the reactivity of an amount of ammonolyzed (nonimidized) maleic anhydride, whereas the styrene moieties are not sensitive to the thermal curing. A maximum in imide functionalities at the surface occurs after curing at 135–150 °C depending on the coating grade. The surface coverage of the coating moieties is complementary to the cellulose components, but local variations in specific Raman bands for the latter suggest interactions due to hydrogen bonding. Principal component analysis with two parameters allows for a good quantification of the imide content and surface coverage.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.