Abstract
The importance of calcium signaling in cell health and disease is the major driving force in current research of intracellular calcium homeostasis. Ca2+ release from the endoplasmic reticulum (ER) and other calcium stores seems to be the crucial factor in the activation of many cellular functions. Significant changes in ER Ca2+ content and dynamics have been implicated in the activation of the ER stress response, abnormal autophagy, and cell death which leads to a variety of pathological conditions. For example, in acute pancreatitis, an inflammatory disease of the exocrine pancreas caused primarily by bile stones or alcohol, excessive intracellular calcium overload due to Ca2+ release from internal stores followed by store operated Ca2+ entry (SOCE) leads to the premature activation of digestive proenzymes within pancreatic acinar cells. Recent data show that SOCE channel blockers are capable of substantially reducing the intracellular Ca2+ overload and subsequent cell necrosis without major alteration of ER Ca2+ content. We also demonstrate here that indirect ER measurements can be misleading and only direct intra‐ER Ca2+ monitoring offers reliable conclusions. In this respect, it is essential to summarize the methods available and provide examples of direct measurements of free Ca2+ concentration [Ca2+] in the ER lumen in pancreatic acinar cells. This article is aimed at highlighting the major techniques for monitoring ER Ca2+ with reference to their advantages, limitations, and views for future improvements. WIREs Membr Transp Signal 2014,3:63–71. doi: 10.1002/wmts.106For further resources related to this article, please visit the WIREs website.Conflict of interest: The authors have declared no conflicts of interest for this article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Wiley Interdisciplinary Reviews: Membrane Transport and Signaling
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.