Abstract
The use of an ultra low expansion cavity plays a crucial role in laser stabilization, and in atomic or ion clocks. We propose an easy method of precise monitoring of optical path distance in Fabry-Perot interferometer. The spacing of mirrors of the Fabry-Perot interferometer in ambient air represents the optical path distance referenced to stable optical frequency of the femtosecond mode-locked laser. With the help of highly selective optical filter it is possible to get only a few of separate spectral components of laser comb. Optical path distance is transfered to optical frequency of the comb component and through the repetition frequency of the laser to the radio-frequency domain. Repetition frequency of the laser can be monitored with the uncertainty referenced to the any local oscillator or through the GPS to the atomic clock standard. By using this mehod we are able to measure and lock the Fabry-Perot cavity to a selected single component of optical frequency comb an to measure the optical path distance directly in rf domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.