Abstract
In this contribution we propose a scheme of Fabry-Perot interferometer measuring the absolute distance in atmosferic conditions using a femtosecond laser comb. The spacing of mirrors of the Fabry-Perot interferometer represents the length standard referenced to stable optical frequency of the femtosecond mode-locked laser. With the help of highly selective optical filter it is possible to get only a few of separate spectral components. By tuning and locking of the Fabry-Perot cavity to a selected single component it is possible to get a mechanical length standard with the uncertainty of the repetition frequency of the femtosecond laser. If the interferometer measures distance in atmospheric conditions, the absolute value of the laser wavelength fluctuates with a refractive index of air. Compairing the measurement in evacuated chamber with measurement in ambient air leads to enhanced precision in measurement of refrective index of air.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.