Abstract

We investigate theoretically momentum-resolved radio-frequency (rf) spectroscopy of a noninteracting atomic Fermi gas in a spin-orbit coupled lattice. This lattice configuration has been recently created at MIT [Cheuk et al., arXiv:1205.3483] for 6Li atoms, by coupling the two hyperfine spin-states with a pair of Raman laser beams and additional rf coupling. Here, we show that momentum-resolved rf spectroscopy can measure single-particle energies and eigenstates and therefore resolve the band structure of the spin-orbit coupled lattice. In our calculations, we take into account the effects of temperatures and harmonic traps. Our predictions are to be confronted with future experiments on spin-orbit coupled Fermi gases of 40K atoms in a lattice potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.