Abstract

We address recent momentum-resolved radio frequency (rf) spectroscopy experiments, showing how they yield more stringent tests than other comparisons with theory, associated with the ultracold Fermi gases. We demonstrate that, by providing a clear dispersion signature of pairing, they remove the ambiguity plaguing the interpretation of previous rf experiments. Our calculated spectral intensities are in semiquantitative agreement with the data. Even in the presence of a trap, the spectra are predicted to exhibit two BCS-like branches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.