Abstract

We briefly review recent progress on ultracold atomic Fermi gases with different types of synthetic spin-orbit coupling, including the one-dimensional (1D) equal weight Rashba-Dresselhaus and two-dimensional (2D) Rasbha spin-orbit couplings. Theoretically, we show how the single-body, two-body and many-body properties of Fermi gases are dramatically changed by spin-orbit coupling. In particular, the interplay between spin-orbit coupling and interatomic interaction may lead to several long-sought exotic superfluid phases at low temperatures, such as anisotropic superfluid, topological superfluid and inhomogeneous superfluid. Experimentally, only the first type - equal weight combination of Rasbha and Dresselhaus spin-orbit couplings - has been realized very recently using a two-photon Raman process. We show how to characterize a normal spin-orbit coupled atomic Fermi gas in both non-interacting and strongly-interacting limits, using particularly momentum-resolved radio-frequency spectroscopy. The experimental demonstration of a strongly-interacting spin-orbit coupled Fermi gas opens a promising way to observe various exotic superfluid phases in the near future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call