Abstract
The governing equations of two-phase flows have a safe operating range, and exceeding this range can negatively impact the results. To extend this safe range, one key strategy is to incorporate the momentum flux coefficient into the governing equations. This paper introduces the application of the momentum flux coefficient to no-pressure or free-pressure model equations for the first time, specifically evaluating its performance in downward co-current two-phase flows through numerical methods. A new and improved version of the no-pressure model is also presented. Findings suggest that the force approach method yields more accurate results compared to other methods, whereas the Richmeier method produces unrealistic outcomes at discontinuities. A comparison between the standard and the developed no-pressure models reveals that the latter does not prevent nonphysical mutations and even exacerbates their occurrence. However, the developed no-pressure model successfully reduces numerical distribution production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.