Abstract
Potent and specific inhibitors of protein.protein interactions have potential both as therapeutic compounds and biological tools, yet discovery of such molecules remains a challenge. Our laboratory has recently described a strategy, called protein grafting, for the identification of miniature proteins that bind protein surfaces with high affinity and specificity and inhibit the formation of protein.protein complexes. In protein grafting, those residues that comprise a functional alpha-helical binding epitope are stabilized on the solvent-exposed alpha-helical face of the small yet stable protein avian pancreatic polypeptide (aPP). Here we use protein grafting in combination with molecular evolution by phage display to identify phosphorylated peptide ligands that recognize the shallow surface of CBP KIX with high nanomolar to low micromolar affinity. Furthermore, we show that grafting of the CBP KIX-binding epitope of CREB KID onto the aPP scaffold yields molecules capable of high affinity recognition of CBP KIX even in the absence of phosphorylation. Importantly, both classes of designed ligands exhibit high specificity for the target CBP KIX domain over carbonic anhydrase and calmodulin, two unrelated proteins that bind hydrophobic or alpha-helical molecules that might be encountered in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.