Abstract
By taking into account the inhomogeneity introduced by the presence of a solid boundary, slip-flow theory extends the range of applicability of the venerable Navier–Stokes description to smaller scales and into the regime where confinement starts to be important. Due to the inherently atomistic nature of solid–fluid interactions at their interface, slip flow can be described, at least in principle, predictively at this level. This review aims to summarize our current understanding of slip flow at the atomistic level in dilute gases and dense liquids. The discussion extends over the similarities and differences between slip in gases and liquids, characterization and measurement of slip by molecular simulation methods, models for predicting slip, and open questions requiring further investigation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have