Abstract
Conformational selection and induced fit are well-known contributors to ligand binding and allosteric effects in proteins. Molecular dynamics (MD) simulations now enable the theoretical study of protein-ligand binding in terms of ensembles of interconverting microstates and the population shifts characteristic of "dynamical allostery." Here we investigate protein-ligand binding and allostery based on a Markov state model (MSM) with states and rates obtained from all-atom MD simulations. As an exemplary case, we consider the single domain protein par-6 PDZ with and without ligand and allosteric effector. This is one of the smallest proteins in which allostery has been experimentally observed. In spite of the increased complexity intrinsic to a statistical ensemble perspective, we find that conformational selection and induced fit mechanisms can be readily identified in the analysis. In the nonallosteric pathway, MD-MSM shows that PDZ binds ligand via conformational selection. However, the allosteric pathway requires an activation step that involves a conformational change induced by the allosteric effector Cdc42. Once in the allosterically activated state, we find that ligand binding can proceed by conformational selection. Our MD-MSM model predicts that allostery in this and possibly other systems involves both induced fit and conformational selection, not just one or the other.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have