Abstract

Molecular dynamics simulations can now routinely access the microsecond timescale, making feasible direct sampling of ligand association events. While Markov State Model (MSM) approaches offer a useful framework for analyzing such trajectory data to gain insight into binding mechanisms, accurate modeling of ligand association pathways and kinetics must be done carefully. We describe methods and good practices for constructing MSMs of ligand binding from unbiased trajectory data and discuss how to use time-lagged independent component analysis (tICA) to build informative models, using as an example recent simulation work to model the binding of phenylalanine to the regulatory ACT domain dimer of phenylalanine hydroxylase. We describe a variety of methods for estimating association rates from MSMs and discuss how to distinguish between conformational selection and induced-fit mechanisms using MSMs. In addition, we review some examples of MSMs constructed to elucidate the mechanisms by which p53 transactivation domain (TAD) and related peptides bind the oncoprotein MDM2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.