Abstract

Molecular dynamics (MD) simulations have become a powerful tool for investigating electrical double layers (EDLs), which play a crucial role in various electrochemical devices. In this Review, we provide a comprehensive overview of the techniques used in MD simulations for EDL studies, with a particular focus on methods for describing electrode polarization, and examine the principle behind these methods and their varying applicability. The applications of these approaches in supercapacitors, capacitive deionization, batteries, and electric double-layer transistors are explored, highlighting recent advancements and insights in each field. Finally, we emphasize the challenges and potential directions for future developments in MD simulations of EDLs, such as considering movable electrodes, improving electrode property representation, incorporating chemical reactions, and enhancing computational efficiency to deepen our understanding of complex electrochemical processes and contribute to the progress in the field involving EDLs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call