Abstract

The physical properties of fluids can change as they flow through confined charged solid areas, such as a charged pore or channel, allowing the transport of fluid through the channels to be controlled. The liquid flow is influenced by the electrical double layer (EDL) that is next to the charged surface. The overlap of the EDL of two nearby charged solid surfaces results in the formation of an electrostatic force. A flow will change the EDL from an equilibrium state to a non-equilibrium state, causing the forces to also change from an equilibrium (static) state to a non-equilibrium (dynamic) state. There are numerous studies that have been performed by molecular dynamics (MD) simulations and surface force experiments which concern the equilibrium EDL and the equilibrium surface forces. However, there are significantly less studies concerning the non-equilibrium EDL and non-equilibrium surface forces, including the effect of a liquid flow on the EDL and the surface forces. This review will focus on how a liquid flow changes the EDL and the surface forces of charged hydrophilic solid surfaces in aqueous electrolyte solutions. Results obtained by MD simulations and surface force experiments are discussed in this review. A flow was seen to be able to distort the EDL, causing the surface forces to change. The EDL and surface forces were affected by the surface charge, the structuring ability of the liquid molecules and ions near the surfaces, the ion type and their specificity towards the surface, the ionic concentration, and the rate of flow of the liquid. The physical properties of the system were shown to change with a flow, e.g. the increase in the fluid viscosity next to a charged solid surface that accompanies a flow. The number of counterions adsorbed to a charged solid surface was also seen to affect the direction of flow in an EDL. The surface forces were shown to change with a flow due to changes in hydrodynamic and electrostatic forces. Information on the effect of the liquid flow on the EDL and surface forces will help improve applications that require fluid to be transported in a defined way through a charged solid vessel.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call