Abstract

The interactions of moving twin boundaries with stacking fault tetrahedra (SFTs) have been studied by molecular dynamics. The results reveal a spectrum of processes occurring during these interactions. In general, they lead to damage of the parent SFT and formation of new defects in the twin lattice. The character of these defects depends on the nature of the twinning front, the size of the SFT and its orientation with respect to incoming dislocations. Typical structures that may be produced in the twin include product-SFTs, free vacancies, planar stacking faults bounded by partial dislocations, mutually linked stacking faults on non-coplanar {111} T planes, small {111} T tetrahedra and their partial forms. Dislocation mechanisms involved in the formation of these defects are being analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.