Abstract

Plantago ovata Forsk is a medicinally important plant. Metallothioneins are cysteine rich proteins involved in the detoxification of heavy metals. Molecular cloning and modeling of MT from P. ovata is not reported yet. The present investigation will describe the isolation, structure prediction, characterization, and expression under copper stress of type 2 metallothionein (MT2) from this species. The gene of the protein comprises three exons and two introns. The deduced protein sequence contains 81 amino acids with a calculated molecular weight of about 8.1 kDa and a theoretical pI value of 4.77. The transcript level of this protein was increased in response to copper stress. Homology modeling was used to construct a three-dimensional structure of P. ovata MT2. The 3D structure model of P. ovata MT2 will provide a significant clue for further structural and functional study of this protein.

Highlights

  • The seed husk of Plantago ovata Forsk has been used as a dietary fiber for a long time, and more recently it has been shown to reduce the development of endothelial dysfunction, hypertension, and obesity [1]

  • We found that amino acid sequence of Plantago ovata MT2 is very similar to Plantago major MT2, and the only difference between them was in the spacer region

  • The distinct amino acid sequences of P. ovata belonged to the spacer region

Read more

Summary

Introduction

The seed husk of Plantago ovata Forsk has been used as a dietary fiber for a long time, and more recently it has been shown to reduce the development of endothelial dysfunction, hypertension, and obesity [1]. The plant has been shown to reduce carbohydrate absorption and postprandial rise of glucose and insulin levels in type 2 diabetes patients [2]. It lowers plasma lipids by altering hepatic and bile acid metabolism [3]. Heavy metal ions play essential roles in many physiological processes. Copper plays important roles in respiration, carbohydrate distribution, protein metabolism, water relations, reproduction, and disease resistance [6]. Soil can be naturally rich in heavy metals [6] which become the major pollutant by industrial processes, such as steel production and petroleum processing [9]. In response to toxic levels of heavy metals, plants evolved a suitable mechanism that controls the uptake and accumulation of both essential and nonessential heavy metals by synthesizing cysteine-rich, metal-binding peptides like metallothioneins which in turn helps in detoxification of heavy metals by chelation and sequestration in the vacuole [11, 12]

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call