Abstract
The authors report on the development of a molecular beam epitaxy approach for atomic layer controlled growth of phase-pure, single-crystalline epitaxial SnO2 films with scalable growth rates using a highly volatile precursor (tetraethyltin) for tin and rf-oxygen plasma for oxygen. Smooth, epitaxial SnO2 (101) films on r-sapphire (101¯2) substrates were grown as a function of tin precursor flux and substrate temperatures between 300 and 900 °C. Three distinct growth regimes were identified where SnO2 films grew in a reaction-, flux-, and desorption-limited mode, respectively, with increasing substrate temperature. In particular, with increasing tin flux, the growth rates were found to increase and then saturate indicating any excess tin precursor desorbs above a critical beam equivalent pressure of tin precursor. Important implications of growth kinetic behaviors on the self-regulating stoichiometric growth of perovskite stannates are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.