Abstract
Rhipicephalus microplus is a cattle-specific tick, causing considerable losses in the livestock industry. The identification of molecules responsible for modulation of host defenses during different parasite stages can help in the development of alternative methods, such as vaccination, to control tick infestations. Hq05, a protein of unknown function identified in the tick Haemaphysalis qinghaiensis, induced a significant protective immune response when used as a vaccine in sheep. In the present study, we investigated Bm05br, the Hq05 homologous gene from R. microplus. Besides H. qinghaiensis, Bm05br homologous found in other tick species such as Rhipicephalus annulatus, Rhipicephalus sanguineus sensu lato, Haemaphysalis longicornis and Ixodes scapularis were comparatively analyzed. Bm05br expression profile in different R. microplus tissues and life-stages was determined by qRT-PCR and Western blot. Bm05br was detected in ovaries, salivary glands and the fat body of both partially and fully engorged females. The highest transcription levels were observed in partially engorged females fat body and salivary glands. Gene knockdown by RNAi reduced egg hatching rate and the weight of tick larvae obtained from treated group, when compared to controls. These results indicate that Bm05br may be involved in R. microplus reproduction. Together with its distribution and high sequence conservation across different tick species, our data suggest Bm05br as a potential antigen for development of a multispecies anti-tick vaccine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.