Abstract

BackgroundTicks transmit several diseases that result in high morbidity and mortality in livestock. Tick-borne diseases are an economic burden that negatively affect livestock production, cost countries billions of dollars through vaccine procurement and other disease management efforts. Thus, understanding the spatial distribution of tick hotspots is critical for identifying potential areas of high tick-borne disease transmission and setting up priority areas for targeted tick disease management. In this study, optimised hotspot analysis was applied to detect hotspots and coldspots of 14 common tick species in Zimbabwe. Data on the spatial distribution of tick species were obtained from the Epidemiology Unit of the Division of Veterinary Field Services of Zimbabwe.ResultsA total of 55,133 ticks were collected with Rhipicephalus decoloratus being the most common species (28.7%), followed by Amblyomma hebraeum (20.6%), and Rhipicephalus sanguineus sensu lato (0.06%) being the least common species. Results also showed that tick hotspots are species-specific with particular tick species occupying defined localities in the country. For instance, Amblyomma variegatum, Rhipicephalus appendiculatus, Rhipicephalus decoloratus, Rhipicephalus compostus, Rhipicephalus microplus, Rhipicephalus pravus, and Rhipicephalus simus were concentrated in the north and north eastern districts of the country. In contrast, Amblyomma hebraeum, Hyalomma rufipes, Hyalomma trancatum and Rhipicephalus evertsi evertsi were prevalent in the southern districts of Zimbabwe.ConclusionThe occurrence of broadly similar hotspots of several tick species in different districts suggests presence of spatial overlaps in the niche of the tick species. As ticks are vectors of several tick-borne diseases, there is high likelihood of multiple disease transmission in the same geographic region. This study is the first in Zimbabwe to demonstrate unique spatial patterns in the distribution of several tick species across the country. The results of this study provide an important opportunity for the development of spatially-targeted tick-borne disease management strategies.

Highlights

  • Ticks transmit several diseases that result in high morbidity and mortality in livestock

  • Spatial distribution of tick hotspots in Zimbabwe A total of 55,133 ticks were observed across the sampled districts with Rhipicephalus decoloratos (28.85%) being the dominant species, followed by A. hebraeum (20.6%), R. appendiculatus (14.8%), H.rufipes (8.9%), R. microplus (7.2%), R. evertsi evertsi (5.9%), A.variegatum (3.8%), H. truncatum (2.7%), R. simus (2.3%), R. zambeziensis (2.2%), R. compostus (2.2%), H. leachi (0.4%), R. pravus (0.09%) and R. sanguineus sensu lato (0.06%)

  • The results indicate that particular tick species tend to cluster in specific localities in the country

Read more

Summary

Introduction

Ticks transmit several diseases that result in high morbidity and mortality in livestock. Tick-borne diseases are an economic burden that negatively affect livestock production, cost countries billions of dollars through vaccine procurement and other disease management efforts. The pathogens include bacteria, helminths, protozoans and viruses These pathogens cause a variety of diseases that negatively affect livestock production and human health [2]. Understanding the spatial distribution of tick hotspots, i.e., geographic regions with high tick prevalence, is important for identifying potential tick-borne disease transmission areas. Mapping tick hotspots is critical for optimal resource allocation through targeting preventive and control strategies to areas with greatest need. This is important in resource limited countries such as Zimbabwe where dipping chemicals are usually inadequate to cover the whole country

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call