Abstract

In this study, cholesterol biotransformation gene-set of human steroidogenic acute regulatory protein-related lipid transfer (START) domains were evaluated from high-throughput gene screening approaches. It was shown that STARD1, STARD3 and STARD4 proteins are better effective transporters of cholesterol than STARD5 and STARD6 domains. Docking studies show a strong agreement with gene ontology enrichment data. According to both complementary strategies, it was found that only STARD1, STARD3 and STARD4 are potentially involved in cholesterol biotransformation in mitochondria through Ω1-loop of C-terminal α4-helical domain. Ensemble docking assessment for a set of selected chemicals of protein–chemical networks has shown possible binding probabilities with START domains. Among those, reproductive toxicity evoked drugs (mifepristone), insecticides (rotenone), tobacco pulmonary carcinogens (benzo(a)pyrene) and endocrine disruptor chemicals (EDCs) including perfluorooctanesulfonic acid (PFOS) and aflatoxin B1 (AFB1) potentially bound with novel hotspot residues of the α4-helical domain. Compound representation space and clustering approaches reveal that the START proteins show more sensitivity with these lead scaffolds, so they could provide probable barrier assets in cholesterol and steroidogenic acute regulatory (StAR) binding and leads adverse consequences in steroidogenesis. These findings indicate potential START domains and their binding levels with toxic chemicals; sorted viewpoints could be useful as a promising way to identify chemicals with related steroidogenisis impacts on human health.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call