Abstract

Lipid transfer proteins of the steroidogenic acute regulatory protein-related lipid transfer (START) domain family are defined by the presence of a conserved ∼210 amino acid sequence that folds into an α/β helix-grip structure forming a hydrophobic pocket for ligand binding. The mammalian START proteins bind diverse ligands, such as cholesterol, oxysterols, phospholipids, sphingolipids, and possibly fatty acids, and have putative roles in non-vesicular lipid transport, thioesterase enzymatic activity, and tumor suppression. However, the biological functions of many members of the START domain protein family are not well established. Recent research has focused on characterizing the cell-type distribution and regulation of the START proteins, examining the specificity and directionality of lipid transport, and identifying disease states associated with dysregulation of START protein expression. This review summarizes the current concepts of the proposed physiological and pathological roles for the mammalian START domain proteins in cholesterol and lipid trafficking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call