Abstract

We study a one-dimensional discrete nonlinear Schrödinger model with hopping to the first and a selected Nth neighbor, motivated by a helicoidal arrangement of lattice sites. We provide a detailed analysis of the modulational instability properties of this equation, identifying distinctive multi-stage instability cascades due to the helicoidal hopping term. Bistability is a characteristic feature of the intrinsically localized breather modes, and it is shown that information on the stability properties of weakly localized solutions can be inferred from the plane-wave modulational instability results. Based on this argument, we derive analytical estimates of the critical parameters at which the fundamental on-site breather branch of solutions turns unstable. In the limit of large N, these estimates predict the emergence of an effective threshold behavior, which can be viewed as the result of a dimensional crossover to a two-dimensional square lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.