Abstract
Microbubble surface modes appear when contrast agents are insonified with specific ultrasound pulses. In this case, the radius becomes a space-dependent function which can be expanded on the basis of spherical harmonics describing the spatial vibrational modes of the bubble. The radial symmetrybreaking, which appears through a Modulational Instability (MI), is typical of many extended nonlinear systems subjected to an external driving. Here we present a mechanical analogue of bubble pulsations, consisting in a macroscopic ring of coupled oscillators driven by parametric forcing. Depending on the amplitude and the frequency of the driving, the mechanical ring presents a parametric instability leading to surface modes and localized modes oscillating at subharmonics of the parametric excitation. Bubbles are used as contrast agent in medical ultrasound imaging and to carry some drug to special locations. The perspective of this analysis is to define practical optimized ultrasound pulses exciting the bubble and leading to drug delivery applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.