Abstract

Chaotic dynamics is always characterized by swarms of unstable trajectories, unpredictable individually, and thus generally studied statistically. It is often the case that such phase-space densities relax exponentially fast to a limiting distribution, that rules the long-time average of every observable of interest. Before that asymptotic time scale, the statistics of chaos is generally believed to depend on both the initial conditions and the chosen observable. I show that this is not the case for a widely applicable class of models, that feature a phase-space (‘field’) distribution common to all pushed-forward or integrated observables, while the system is still relaxing towards statistical equilibrium or a stationary state. This universal profile is determined by both leading and first subleading eigenfunctions of the transport operator (Koopman or Perron–Frobenius) that maps phase-space densities forward or backward in time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.