Abstract
We report on numerical studies of bounded double-diffusive turbulent convection, which involves the combined effects of concentration/solutal and thermal buoyancy forces. Our study focuses on an intermediate range of the characteristic non-dimensional numbers, specifically 107≤Rac≤109, and 0≤Raθ≤106. We use fixed values for the concentration and temperature Prandtl numbers (i.e. Prc=700, Prθ = 7), which approximately correspond to seawater properties. We apply wall-resolved Large Eddy Simulations (LES) and compare the obtained results with available Direct Numerical Simulations (DNS) in the literature. Our findings show an overall good agreement in predicting the global wall mass and heat transfer coefficients, achieved with significantly reduced computational costs. Furthermore, the local mass and heat transfer distributions reveal a high sensitivity to the strength of the vertically imposed stable thermal stratification. Finally, we present the vertical profiles of the long-term time-averaged first and second moments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.