Abstract

This study deals with a data reduction model for clarifying experimental results of a counter-current slug flow absorber, working with ammonia–water mixture, for significantly low solution flow rate conditions. The data reduction model to obtain the local heat and mass transfer coefficient on the liquid side is proposed by using the drift flux model to analyze the flow characteristics. The control volume method and heat and mass transfer analogy are employed to solve the combined heat and mass transfer problem. As a result, it is found that the local heat and mass transfer coefficient on the liquid side of the absorber is greatly influenced by the flow pattern. The heat and mass transfer coefficient at the frost flow region is higher than that at the slug flow region due to flow disturbance and random fluctuation. The solution flow rate and gas flow rate have influence on the local heat and mass transfer coefficient at the frost flow region. However, it is insignificant at the slug flow region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call