Abstract

We report on the development of a modular system of high-frequency printed circuit boards (PCBs) for electrical low-noise characterization of multigate quantum devices. The whole measurement setup comprises PCBs operating from room temperature to a few kelvins, and custom software to control the broadband electronics held at cryogenic and room temperature. The PCBs coupling scheme and the custom tailoring of the user panel make our platform particularly flexible. At the cryogenic stage, one board hosts the electronics for readout. It consists in a custom complementary metal–oxide–semiconductor circuit for the current sensing. It is composed by a multiplexer for a digital selection of the device under test among up to four samples, connected to a cryogenic transimpedance amplifier with two possible gains, the maximum bandwidth of 250 kHz and the minimum equivalent input noise of 10 fA/ $\sqrt {\mathrm{Hz}}$ . Such board is coupled to the PCB sample holder, where 14 low-frequency input lines bias the devices and control the gates. Four additional high-frequency input paths with a bandwidth of 1 GHz and an isolation lower than −40 dB at 3 GHz have been implemented to apply a few millivolt pulses with a minimum duration of 1 ns. The PCBs assemblage and the cryogenic electronics are electrically characterized at 4.2 K and later used to perform quantum transport spectroscopy and single-charge dynamics readout at a few microsecond scales in two silicon nanoscaled field-effect transistors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.