Abstract

The effects of high electronic energy deposition on the structure, surface topography, optical property and photoelectrochemical behavior of barium titanate thin (BaTiO3) films have been investigated by irradiating films with 120 MeV Ag9+ ions at different ion fluences in the range of 1 × 1011–3 × 1012 ions cm−2. Barium titanate thin films were deposited on indium tin oxide-coated glass substrate by sol–gel spin coating method. The structure of the film was crystalline with tetragonal phase. Surface topography was studied by atomic force microscopy detailing the values of roughness of the films. Maximum photocurrent density of 1.78 mA cm−2 at 0.4 V/SCE and applied bias photon-to-current efficiency (ABPE) of 0.91% was observed for BaTiO3 film irradiated at 1 × 1011 ions cm−2.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call