Abstract

Neuromorphic computing is a next‐generation computing technology featured by parallel data processing and adaptive learning. Two significant factors that improve learning accuracy are the ‘dynamic range’ and ‘linearity’ of the weight update. In a ferroelectric synaptic transistor, the weight update can be modulated by adjusting the applied voltage. The voltage pulse train should be carefully optimized to improve the learning accuracy and reduce programming energy consumption. In this study, we investigated the learning accuracy of neuromorphic computing based on the characteristics of synaptic devices and the program energy consumption according to pulse programs. We demonstrated changes in the analog conductance characteristics of ferroelectric thin‐film transistors by varying the pulse program for synaptic plasticity, discussed the characteristics for improving learning accuracy, and compared the programming energy consumption according to the pulse programs. We proposed a logarithmic‐incremental‐step pulse program that reduces programming energy consumption and improves learning accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.