Abstract

A new simple method for modification of the porous alumina barrier-layer is described and characterized by the voltammetric, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and electrochemical impedance spectroscopy (EIS) techniques. The method is based on re-anodization of porous alumina under galvanostatic conditions in the anodizing bath that, in addition to conventional anodization solution components, contains fluoride salts: (NH 4) 2SiF 6 or NH 4F. During first few minutes of alumina re-anodization, the sharp drop of anodizing voltage was observed, which is indicative of chemical/electrochemical transformations of the alumina barrier-layer. As a result, the scalloped structure of the barrier-layer changes drastically, becoming smooth and finely grained. Upon re-anodization, a significant loss of insulating ability of the barrier-layer and considerable increase in its capacitance were observed, while the variation of the constant phase element was found to be consistent with the oxide film morphology transformations observed by microscopy techniques. All these changes intensify with fluoride concentration increase. Curiously, (NH 4) 2SiF 6 exhibited about three-fold stronger effect on the barrier-layer properties than NH 4F, thus allowing us to hypothesize about possible chemical break up of SiF 6 2− anion and the formation of the AlF 3 phase inside the alumina pores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.