Abstract

AbstractIn the present study, poly (3, 4-ethylenedioxythiophene) (PEDOT) nanostructures were obtained by oxidative polymerization of monomer ‘3, 4-ethylenedioxythiophene’ in the presence of poly (acrylic acid) (PAA) in FeCl3as an oxidizing agent. The PEDOT nanostructures were characterized using the Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques respectively. The morphology of PEDOT nanostructures revealed flowerlike-shape agglomerates with an increase in the concentrations of PAA. The SEM, TEM and FTIR studies revealed that the presence of PAA could only induce a change in morphology during polymerization, but could not influence the molecular structure of the PEDOT nanostructures. The synthesized PEDOT nanostructures were used as electrode material for supercapacitor. The electrochemical capacitive properties of the PEDOT nanostructures were investigated with the Cyclic Voltammetry (CV), galvanostatic charge–discharge and electrochemical impedance spectroscopy (EIS) techniques in the three-electrode cell system. The capacitance of the PEDOT electrode was measured in 0.1M LiClO4and 2M H2SO4electrolytes. The highest specific capacitance value of 215F/g for a PEDOT nanostructured electrode was calculated in 1 M H2SO4electrolyte.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call