Abstract

An innovative nanocomposite electrode was chemically synthesized using molybdenum disulphide (MoS2)- polyethylenedioxythiophene (PEDOT) to understand the charge mechanism in a symmetric supercapacitor. The MoS2-PEDOT nanocomposite was produced at various ratios of MoS2 to ethylenedioxythiophene (EDOT) in an aqueous medium of polyanions polystyrene sulfonate (PSS) and cetyltrimethylammonium bromide (CTAB) at controlled conditions. The morphology, crystallinity, and optical properties of MoS2-PEDOT nanocomposite materials were characterized using scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, particle size analyzer, Raman spectroscopy, X-ray-diffraction, and transmission electron microscopy (TEM) techniques, respectively. The electrochemical properties of the supercapacitor were investigated using cyclic voltammetry, charging–discharging at constant current and electrochemical impedance spectroscopy (EIS) techniques. The specific capacitance, power and energy densities of the supercapacitor were estimated using cyclic voltammetry (CV), charging–discharging, Nyquist and Bode plots. The specific capacitance was estimated to be 361 Farad/gram (F/g) for the 1:2 weight ratio of MoS2 to the EDOT monomer in the MoS2-PEDOT nanocomposite based electrodes. Nevertheless, this study provides a fundamental aspect of synthesis of nanocomposite material for optimum attainment supercapacitive properties based on the MoS2-PEDOT nanocomposite electrode for practical energy storage applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call