Abstract

High-quality part surfaces with high surface finish and form accuracy are increasingly in demand in the mold/die and optics industries. The computer-controlled polishing (CCP) is commonly used as the final procedure to improve the surface quality. This paper presents a theoretical and experimental study on the polished profile of CCP with sub-aperture pad. A material removal model is proposed based on the evaluation of the amount of material removed from the surface along a direction orthogonal to the tool path. The model assumes that the material removal rate follows the Peterson equation. The distribution of the sliding velocity at the contact region is presented. On the basis above, the approaches to calculate the polished profiles are developed for the sub-aperture pad polishing along a straight path and a curved path. The model is validated by a series of designed polishing experiments, which reveals that polishing normal force, angular spindle velocity, feed rate and polishing path all have effects on the polished profile. The result of experiments demonstrates the capability of the model-based simulation in predicting the polished profile.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.