Abstract

The deterministic polishing process is usually used as the final step to produce part surfaces of high surface finish and form accuracy. This article presents the models of the local and the global polished profiles for the deterministic polishing process when a surface is polished by a spherical polisher. The local polished profile is modeled by integrating the index of material removal, which is defined as the polished depth at unit length of the polishing path, at each tool–surface contact region. According to the model, the local polished profile is determined by the process parameters, the tool attitude, the measuring angle and the geometrical/mechanical properties of workpiece and tool. The linear algebraic expression of the global polished profile is derived by convoluting the local polished depth at each dwell point of the polishing process. The polishing experiments are conducted to verify the proposed model in the different polishing conditions. Moreover, simulation results are given to illustrate the application of the proposed model in optimizing the feed rate to minimize the surface form error in the deterministic polishing process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.