Abstract
Traditional networked control systems (NCSs) analysis and design have been based on the single closed-loop configuration. This paper studies the modelling and stability of multi-input multi-output (MIMO) networked control systems (NCSs) with multiple channels. Unlike the NCSs based on the single close-loop configuration, there exist data packet dropout, data packet out-of-order and network-induced delay in every channel, which make multi-channel MIMO NCSs more complex. In order to solve these network-related non-deterministic issues, a general switched system model with unknown switched sequence for multi-channel MIMO NCSs is first proposed, which can not only describe the MIMO NCSs where the controller communicates with sensors and actuators through distinct channels, but also can describe the NCSs based on the single closed-loop configuration. Based on Lyapunov stability theory combined with linear matrix inequalities (LMIs) techniques, a sufficient condition is then derived for multi-channel MIMO NCSs to be asymptotical stable in term of a set of bilinear matrix inequalities. Furthermore, the proposed results are easily extended to the uncertain MIMO NCSs. Finally, simulation results confirm the feasibility and effectiveness of the proposed method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have