Abstract
Elastic abrasive cutting is a new high-performance method to produce workpieces made of materials of different hardness, which ensures lower wear of cut-off wheels and higher quality machined surfaces. However, the literature referring to elastic abrasive cutting is scarce; additional studies are thus needed. This paper proposes a new approach for modelling and optimizing the elastic abrasive cutting process, reflecting the specifics of its particular implementation. A generalized utility function has been chosen as an optimization parameter. It appears as a complex indicator characterizing the response variables of the elastic abrasive cutting process. The proposed approach has been applied to determine the optimum conditions of elastic abrasive cutting of С45 and 42Cr4 steels. To solve the optimization problem, a model of the generalized utility function reflecting the complex influence of the elastic abrasive cutting conditions has been developed. It is based on the findings of the complex study and modelling of the response variables of the elastic abrasive cutting process (cut-off wheel wear, time per cut, cut piece temperature, cut off wheel temperature and workpiece temperature) depending on the conditions of its implementation (compression force F exerted by the cut-off wheel on the workpiece, workpiece rotational frequency nw, cut off wheel diameter ds). By applying a genetic algorithm, the optimal conditions of elastic abrasive cutting of С45 and 42Cr4 steels: ds = 120 mm; F = 1 daN; nw = 63.7 min–1 and nw = 49.9 min–1, respectively for С45 and 42Cr4 steels, have been determined. They provide the best match between the response variables of the elastic abrasive cutting process.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have