Abstract

Abstract Power Quality has always been a major concern ever since the increase in the usage of many power electronic loads such as Personal Computers (PCs), TVs, variable frequency drives in nearly every household. These loads are a major source of harmonics into the distribution system. Unbalanced Three-phase loads or different single-phase loads result in unbalance in the three-phase voltages and currents in the grid. Equipment damage, Loss of data, nuisance tripping, overheating of wires, relay tripping are few of the major issues caused due to power quality. Also, there is an increase in the awareness about the various power quality issues as well as its ill-effects amongst the consumers. Hence, it is essential to improve the quality of the power supplied. Active and Passive filters play a huge role in the mitigation of power quality issues. In recent years, usage of active filters has increased because tuning is possible for various harmonic elimination and active filters when combined with a storage system can provide active as well as reactive power compensation. The fast depletion of non-renewable sources of energy and its effect on the environment has shifted the focus on the usage of non-renewable energy sources such as solar energy, wind energy, etc for the production of electricity. In this research work, solar energy is combined with shunt active filter for the mitigation of various power quality issues occurring in a grid-connected non-linear and unbalanced three-phase load. The active power filter will provide reactive power compensation to the non-linear load and active power delivery for unbalanced loads such the grid current and voltage will remain balanced and the stress on the grid is reduced while meeting the load demand. A battery system is also integrated to store the excess energy that may be generated by the Photo-Voltaic(PV) array and acts as a source of energy when PV array output is low or nil. Conservative Power Theory is used for controlling the power injection into the system by the Voltage Source Converter(VSC). The proposed system is verified using MATLAB/SIMULINK.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.