Abstract

Accurate modelling of the geographic distribution of disease vectors is an important step towards developing strategies for effective control of vector borne diseases. In this study, we used maximum entropy (Maxent) to develop a spatially explicit model to predict the habitat of a malaria causing vector, Anopheles arabiensis, based on key environmental factors. Our results show that altitude combined with isothermality, temperature seasonality, annual precipitation and precipitation of the wettest month can be used to successfully model habitat suitability of A. arabiensis. Based on these five key factors, our results show that areas that are highly suitable for A. arabiensis are generally in the north, northeast, south and south eastern parts of Zimbabwe. In fact, our results show that all the five factors had AUC values ≥70% which is classified as good for predictive purposes. The results of our Maxent model overall show AUC values of 0.84 for training and 0.88 for test data. In addition, our results also show that the habitat suitability model positively correlated (p < 0.05) with malaria incidences recorded at health facilities for the period 1974–1981 and the years 1996, 1997, 1998 and 1999 although the correlations are weak. Our results suggest that A. arabiensis habitat suitability can be used as an indicator of malaria incidences.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.