Abstract

Corrosion pits have been shown to nucleate fatigue cracks, and this is a critical issue for aerospace aluminum alloys, which experience a variety of corrosive environments in service. Consequently, modeling pit growth as a function of environment is necessary. In this study, two orientations of AA7075-T651 blocks were boldly exposed in solutions of varying temperature, pH, and [Cl −] for three exposure times. Optical profilometry and Weibull functions were utilized to characterize pit depth and diameter distributions. Artificial neural networks were a powerful tool in effectively modeling maximum pit dimensions and Weibull parameters. In most environments, pit growth followed t 1/3 kinetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.