Abstract
The nucleation of fatigue cracks from corrosion pits was investigated by conducting fatigue experiments on open-hole specimens of a 2024-T3 aluminum (bare) alloy in 0.5 M NaCl solution at room temperature and different load frequencies from 0.1 to 20 Hz. The maximum cyclic stresses applied at the hole ranged from 144 to 288 MPa and the load ratio, R, was 0.1. A specimen subjected to pre-corrosion in the NaCl solution prior to corrosion fatigue was also investigated. Pitting was found to be associated with constituent particles in the hole and pit growth often involved coalescence of individual particle-nucleated pits. Fatigue cracks typically nucleated from one or two of the larger pits, and the size of the pit at which the fatigue crack nucleates is a function of stress level and load frequency. The observations indicate that the nucleation of corrosion fatigue cracks essentially results from a competition between the processes of pitting and crack growth. Pitting predominates in the early stage of the corrosion fatigue process, and is replaced by corrosion fatigue crack growth. Based on these results, two criteria are proposed to describe the transition from pit growth to fatigue crack growth: (1) the stress intensity factor of the equivalent surface crack has to reach the threshold stress intensity factor, Δ K th, for fatigue crack growth, assuming that a corrosion pit may be modeled by an equivalent semi-elliptical surface crack, and (2) the time-based corrosion fatigue crack growth rate also exceeds the pit growth rate.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.